

Montage- und Betriebsanleitung

Ölzustandssensor FluidIX Lub-6

ZILA GmbH Neuer Friedberg 5 98527 Suhl

Phone: +49 (0) 3681 867300 Fax: +49 (0) 03681 8673099

> Web: www.zila.de E-Mail: info@zila.de

Inhaltsverzeichnis

1.		Lieferur	nfang 2
2.		Allgeme	eine Hinweise 2
	2.1.	Instal	lationspersonal 2
3.		Produkt	beschreibung 2
4.		Produkt	eigenschaften 3
	4.1.	Mess	orinzip 3
	4.2.	Techr	nische Daten 3
	4.3.	Abme	essungen*3
5.		Kommu	nikation 4
	5.1.	Arten	der Messung 4
	5.2.	•	guration über das Web Interface 5
		5.2.1.	LED-Status6
		5.2.2.	Digitale E/A-Konfiguration 6
	5.3.	ModE	Bus TCP/IP6
		5.3.1.	Unterstützte Datentypen in ModBus TCP/IP 6
		5.3.2.	Unterstütze Funktionen 6
		5.3.3.	Unterstützte Exception Codes 7
		5.3.4.	Register 7
6.		Elektriso	che Anschlüsse10
7.		Montag	e und Inbetriebnahme 10
	7.1.	Mont	age 10
	7.2.	Inbet	riebnahme 11
8.		Wartun	g11
	8.1.		ksetzen auf Werkseinstellungen 11
9.		Gerätes	upport11

1. Lieferumfang

- Ölzustandssensor FluidIX Lub-6
- PIN-Adapter (Stecker)
- Montage- und Betriebsanleitung

2. Allgemeine Hinweise

Bitte lesen Sie diese Installationsanleitung sorgfältig durch, bevor Sie den ZILA-Ölzustandssensor verwenden und befolgen Sie die hierin enthaltenen Anweisungen. Bewahren Sie diese Montage- und Betriebsanleitung für den späteren Gebrauch gut auf.

2.1. Installationspersonal

Einbau, Inbetriebnahme und der Anschluss an das Stromnetz dürfen nur von qualifiziertem Personal vorzunehmen werden.

Reparaturen sind ausschließlich von Elektrofachkräften durchzuführen.

Das Gerät ist nur mit der angegebenen Spannung zu betreiben.

Änderungen und Umbauten am Gerät sind nicht zulässig und entbinden die ZILA GmbH von jeglicher Gewährleistung und Haftung.

3. Produktbeschreibung

Dieser Sensor ist für die Onlineüberwachung des Ölzustands unter den genannten Einsatz- und Umgebungsbedingungen geeignet. Der Ölzustand wird mit dem optischen Messprinzip NDIR (nichtdispersive Infrarottechnologie) gemessen und kann über digitale Schnittstellen sowie eine PC-Software ausgewertet werden. Je nach Anwendungsfall wird der Sensor werkseitig vorkonfiguriert.

Der Sensor selbst befindet sich in einem Aluminiumgehäuse, das Öl kommt mit einem Aluminiumkörper in Berührung und wird über G1/8"-Verschraubungen in den Ölkreislauf eingebunden. Die robuste Bauform ist zudem für die direkte Montage an der Maschine und Anlage

geeignet. Die Betriebsspannung beträgt 18...36 V DC.

4. Produkteigenschaften

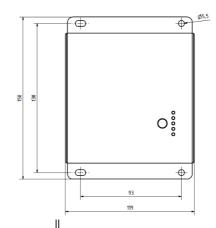
4.1. Messprinzip

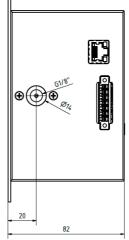
Das integrierte Messsystem besteht aus einer Mehrkanal-Infrarotmesszelle mit zugehöriger Elektronik und Peripherie. Basierend auf der IR-Absorptionsmessung wird die Ölchemie auf einzelnen Spektral-bändern gemessen und verarbeitet, um die chemische Zusammensetzung des Öls zu bestimmen.

Es können, je nach Sensorkonfiguration, neben den beiden Referenzkanälen bis zu 6 Parameter gleichzeitig mit einem Gerät ermittelt werden. Welche Konfiguration für Ihre Anwendung die passende ist, muss vor Auslieferung mit unserem Vertrieb abgestimmt werden. Momentan kann der FluidIX Lub-6 folgende Parameter messen:

Wassergehalt

- Antiverschleiß-Additiv
- Oxidation
- ZDDP- Antiverschleiß-
- Reziproke Oxidation
- n Additiv
- Nitrierung
- EP/AW-AdditivAminisches
- SulfatierungRußgehalt
- Antioxidantien-Additiv


4.2. Technische Daten


Eigenschaften			
	1836 V DC		
Betriebsspannung	max. Stromaufnahme		
	400 mA @18 V		
Gehäuse	Aluminiumgehäuse		
Einsatzbedingungen			
Betriebs-	0 °C bis +70 °C		
temperatur	(optional 0+90 °C)		
Maximaler	10 bar		
Betriebsdruck	(optional 30 bar)		
Lagertemperatur	-40 °C bis +85 °C		
Digitale E/A-Anschlüsse			
Digitaler	1x Digitaleingang		
Eingang	1836 V (10 mA max.)		
Digitale	4x Digitalausgang		
Ausgänge	1836 V (5 mA max.)		
Ethernet-Anschluss			

10/100 Mbit/s Ethernet mit Standard RJ-45 LAN 10/100 Base-T Anschluss

Kommunikation über das herstellerunabhängige Busprotokoll Modbus TCP/IP

4.3. Abmessungen*

Alle Angaben in mm

*Die Abmessungen der neuesten Version weichen von denen der älteren Versionen leicht ab.

5. Kommunikation

Die Kommunikation mit dem Sensor kann auf verschiedene Arten erfolgen:

- Über das Web Interface
- Über ModBus TCP/IP
- Über ein GSM-Modul (in Vorbereitung)
- Über MQTT (in Vorbereitung)

Fünf Minuten nach dem Einschalten des Geräts wird die erste Messung mit Standardeinstellungen durchgeführt.

Wenn die Messungen mit einem anderen Setup durchgeführt werden sollen, besteht für den Nutzer die Möglichkeit, diese Einstellung innerhalb der ersten fünf Minuten vorzunehmen. Währenddessen kann der Sensor auch TCP- oder digitale Eingangsmessanfragen empfangen.

Für die Dauer der Messung ist die Kommunikation mit dem Gerät über das Webinterface bzw. den Modbus TCP nicht möglich. Es muss das Ende der Messung abgewartet werden.

5.1. Arten der Messung

Das Gerät unterstützt verschiedene Arten der Messung. Beim Auslesen der Messdaten wird für jeden Messpunkt die jeweilige Messart hinterlegt.

- Art 0: Messung nach definiertem Messintervall aus dem Webinterface
- Art 1: Erste Messung nach Einschalten des Geräts
- Art 2: TCP-Starttrigger zum Start der Messung, danach definiertem Zeitintervall (Typ 0)
- Art 3: TCP-Trigger-Messung, um jederzeit (zu jedem Triggersignal) eine manuelle Messung zu starten (Achtung: zwischen zwei Messungen müssen mindestens 10 Minuten liegen)

Art 4: Starttrigger über digitales Eingangssignal zum Start der Messung, anschließend weiter mit definiertem Zeitintervall (Tvp 0)

Trigger-Messung über digitales Eingangssignal, um zu jeder Zeit (zu je-dem Triggersignal) eine manuelle Messung zu starten (Achtung: zwischen zwei Messungen müssen mindestens 10 Minuten liegen)

Art 6: Harte Trigger-Messung. Falls Typ 3 und Typ 5 ausgewählt sind und kein Triggersignal vorliegt, startet das System nach zwei Tagen automatisch eine Messung.

Art 7: Belegt

Art 5:

Art 8: Belegt

Art 9:

Art 10:

Bei hohen Änderungen der Öltemperatur wird die Messung verworfen und stattdessen der vorherige Messdatensatz dupliziert. Alle 10 Minuten wird nun eine weitere Messung durchgeführt, bis wieder eine stabile Temperatur erreicht ist. Nach Erreichen eines stabilen Zustandes geht das Gerät wieder in den Normalbetrieh üher.

Bei einem internen Gerätefehler wird die Messung verworfen und stattdessen der vorherige Messdatensatz dupliziert. Alle 10 Minuten wird dann eine neue Messung durchgeführt. Wird der Fehler nach 5 Versuchen immer noch detektiert, so wechselt das Gerät in den Modus Gerätefehler (rote LED leuchtet dauerhaft).

Konfiguration über das Web Interface

Die Konfiguration des Sensors und die Übertragung der Messdaten erfolgt über den Webbrowser Google Chrome oder Mozilla Firefox am PC. Gehen Sie wie folgt vor:

- PC auf IP-Adresse 192.168.0.100 einstellen oder andere IP-Adresse in gleichem Sub-Netz aber nicht 192.168.0.102 verwenden, da es sich hierbei um die Standard IP-Adresse des Sensors handelt (falls sie nicht bereits umgestellt wurde).
- Ethernetkabel zwischen Sensor und PC verbinden (Firewall-Einstellung beachten!)
- Geben Sie im Browser die IP-Adresse des Sensors ein (192.168.0.102/index.html).

Es öffnet sich folgendes Fenster:

Symbole und Beschreibungen:

Symbol	Beschreibung	
	Geräteinformationen	
X	Geräteeinstellungen Gerätetest	
	Mess- und Grenzwerte Stellen Sie die Grenzwerte ein und übertragen Sie anschließend die Änderungen.	
	Alarm und Änderungen	
?	Impressum	

) - —
	Gerätestatus OK
1	Neue Messung notwendig Hohe Öltemperaturänderungen oder interner Gerätefehler (Typ 9 oder Typ 10)
	Gerätestatus fehlerhaft
	Status Speicherplatz Wenn der Speicher voll ist, wird der älteste Messdatensatz im Speicher durch einen neuen gelöscht, usw. (Ringpufferstruktur).
	Gerätename und -beschreibung Bitte geben Sie diese Daten ein und übertragen Sie anschließend die Änderung.
	Systemzeit
Q	Benutzerverwaltung Erstellen/Wechseln von passwort- geschützten Profilen
	IP-Konfiguration Eingabe der IP-Adresse des Sensors (192.168.0.x x=0254), anschlie- ßend Änderungen übertragen
	Letzter Ölwechsel Hier können Sie Zeit und Datum des letzten Ölwechsels aktualisieren. Übertragen Sie bitte ebenfalls an- schließend die Änderungen.
×	Letzte Messung
*	Messintervall Hier ist die Intervallzeit einzustellen. Bitte übertragen Sie anschließend die vorgenommenen Änderungen.
1/0 	Digitale E/A-Konfiguration (s.a. 5.2.2.) Bitte nutzen Sie die Slider, um LED und Ausgang zu testen.
	TCP-Messung Stellen Sie die Messart ein, übertragen Sie dann die Änderungen an das Gerät und drücken Sie "Messung starten".
	Parameter Limits Stellen Sie die Grenzwerte ein und übertragen Sie anschließend die Änderungen auf das Gerät.

Ölzustand OK	
Ölzustand mittelmäßig	
Ölzustand kritisch	
Vorgenommene Änderungen über- tragen	
Messwerte speichern Aktuelle Messdaten in .txt-Datei speichern	
Alle Messungen laden Anzeige der Messergebnisse in grafischer Form	
Alle Messungen löschen	

5.2.1. LED-Status

LED #1	Sensorstatus AUS: Langsam blinkend: Schnell blinkend: Rot:	US: Kein Fehler angsam blinkend: Messung chnell blinkend: Speicher voll	
LED #2-4	Ausgänge 2-4 - Parameterüberwachung: Rot: Grenzwert überschritten - Messaktivität: Rot: Messung aktiv		
LED #5	Stromversorgung Grün: Gerät eingeschaltet		

5.2.2. Digitale E/A-Konfiguration

Eingang	- Deaktiviert
	- Bestimmte Funktion
	 Synchrone Messung
	nach Starttriggersignal
	starten (Typ 4)
	- Trigger-Messung (Typ 5)
Ausgang 1	Gerätestatus
	(Fehlerzustand)

Ausgang 2-4	- Deaktiviert
	- Messaktivität
	 Überwachung einzelner
	Parameter
	- Überwachung
	Grenzwert aller Kanäle
	- Pumpe aktivieren (wird
	30 Minuten vor Beginn
	der Messung aktiviert
	und stoppt, wenn die
	Messung beendet ist)

5.3. ModBus TCP/IP

Das Modbus-Protokoll basiert auf einer Master/Slave- bzw. Client/Server-Struktur und ist Teil der Norm IEC 61158. Zur Kommunikation wird das Gerät über Ethernetkabel mit PC/Steuerung verbunden. Wichtig ist hierbei, dass sich Gerät und PC im gleichen Subnetz (192.168.0.xx) befinden.

5.3.1. Unterstützte Datentypen in ModBus TCP/IP

Das Gerät unterstützt die folgenden Datentypen:

Datentyp	Größe	Objekttyp	
Discrete-	1 Bit	Nur lesen	
Inputs		Nui leseli	
Holding- Register	16 Bit ohne Vorzeichen	Lesen & schreiben (mit Ausnahmen)	
Input- Register	16-Bit- Register mit Vorzeichen	Nur lesen	

5.3.2. Unterstütze Funktionen

Die folgenden Modbus-TCP-Funktionen werden vom Gerät unterstützt:

Name a day Frankisa	Cada	
Name der Funktion	Code	Hex
Discrete-Inputs lesen	02	0x02
Holding-Register lesen	03	0x03
Input-Register lesen	04	0x04
Single-Register	06	0x06
schreiben		
Multiple Register	16	0x10
schreiben		

5.3.3. Unterstützte Exception Codes

Folgende Modbus-TCP-Exception-Codes werden vom Gerät unterstützt:

Exception Code	Beschreibung
01	Unbekannte Funktion.
	Die empfangene Meldung ist
	für das adressierte Gerät nicht
	zulässig.
02	Unbekannte Datenadresse.
	Die im Abschnitt
	"Funktionsabhängige Daten"
	der Meldung genannte
	Adresse ist im angesteuerten
	Gerät nicht gültig.
03	Unbekannter Datenwert.
	Der am adressierten Geräte-
	standort referenzierte Wert
	liegt nicht innerhalb des gül-
	tigen Bereichs.
04	Ausfall eines Slave-Geräts.
	Das angesteuerte Gerät konnte
	aufgrund eines schlechten
	Gerätezustands keine gültige
	Meldung verarbeiten.

5.3.4. Register

Funktionen, die vom Gerät gelesen oder geschrieben werden, sind wie folgt **11** Discrete Inputs, **48** Holding Register und **9** Input Register zugeordnet:

Nummer des Discrete Inputs	Adresse	Beschreibung
Discrete Input 1	0x0000	Status der Messung (0 wenn keine Messung läuft)
Discrete Input 2	0x0001	Status des internen Speichers (1 falls Speicher voll, an- sonsten 0)
		TP-Kanäle haben den Schwellwert überschritten
Discrete	0x0002	0 : Kein Schwellwert wurde überschritten
Input 3		1: Ein oder mehrere Kanäle haben den Schwellwert über- schritten
Discrete	0x0003	0 : TP 1.1 nicht überschritten
Input 4		1: Grenzwert TP 1.1 überschritten
Discrete	0x0004	0 : TP 1.2 nicht überschritten
Input 5		1: Grenzwert TP 1.2 überschritten
Discrete		0: TP 1.3 nicht überschritten
Input 6	0x0005	1: Grenzwert TP 1.3 überschritten
Discrete	0x0006	0 : TP 1.4 nicht überschritten
Input 7		1: Grenzwert TP 1.4 überschritten
Discrete		TP 2.1 hat Schwelle überschritten
Input 8	0x0007	0 : Nicht überschritten

		1: Grenzwert über- schritten
Discrete Input 9	0x0008	0: TP 2.2 nicht überschritten 1: Grenzwert TP 2.2 überschritten

Discrete	00000	0 : TP 2.3 nicht überschritten
Input 10	0x0009	1: Grenzwert TP 2.3 überschritten
Discrete	0x000A	0 : TP 2.4 nicht überschritten
Input 11	UXUUUA	1: Grenzwert TP 2.4 überschritten

Nummer des Holding Registers	Adresse	Beschreibung
Holding Register 1	0x0000	TP 1.1 (Rohwert 1 / Referenzwert)
Holding Register 2	0x0001	TP 1.2 (Rohwert 2)
Holding Register 3	0x0002	TP 1.3 (Rohwert 3)
Holding Register 4	0x0003	TP 1.4 (Rohwert 4)
Holding Register 5	0x0004	TP 2.1 (Rohwert 5 oder Referenzwert)
Holding Register 6	0x0005	TP 2.2 (Rohwert 6)
Holding Register 7	0x0006	TP 2.3 (Rohwert 7)
Holding Register 8	0x0007	TP 2.4 (Rohwert 8)
Holding Register 9 *	0x0008	TP 1.1 (Absorptionswert)

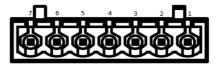
Holding Register 10 *	0x0009	TP 1.2 (Absorptionswert)
Holding Register 11 *	0x000A	TP 1.3 (Absorptionswert)
Holding Register 12 *	0x000B	TP 1.4 (Absorptionswert)
Holding Register 13 *	0x000C	TP 2.1 (Absorptionswert)
Holding Register 14 *	0x000D	TP 2.2 (Absorptionswert)
Holding Register 15 *	0x000E	TP 2.3 (Absorptionswert)
Holding Register 16 *	0x000F	TP 2.4 (Absorptionswert)
Holding Register 17 *	0x0010	Art der Messung (Typ 0 bis 10)
Holding Register 18 *	0x0011	Letzte Messung (Jahr)
Holding Register 19 *	0x0012	Letzte Messung (Monat)
Holding Register 20 *	0x0013	Letzte Messung (Tag)
Holding Register 21 *	0x0014	Letzte Messung (Stunde)
Holding Register 22 *	0x0015	Letzte Messung (Minute)
Holding Register 23 *	0x0016	Letzte Messung (Sekunde)
Holding Register 24	0x0017	Messintervall
Holding Register 25 *	0x0018	Belegt
Holding Register 26 *	0x0019	Belegt

Holding Register 27 *	0x001A	Belegt
Holding Register 28 *	0x001B	Belegt
Holding Register 29 *	0x001C	Belegt
Holding Register 30 *	0x001D	Belegt
Holding Register 31	0x001E	Letzter Ölwechsel (Jahr)
Holding Register 32	0x001F	Letzter Ölwechsel (Monat)
Holding Register 33	0x0020	Letzter Ölwechsel (Tag)
Holding Register 34	0x0021	Letzter Ölwechsel (Stunde)
Holding Register 35	0x0022	Letzter Ölwechsel (Minute)
Holding Register 36	0x0023	Letzter Ölwechsel (Sekunde)
Holding Register	0x0024	TCP-Messung lesen/schreiben 0: TCP-Messung deaktiviert 1: Synchrone
37		Messung nach TCP- Start-Trigger-Signal 2: TCP-Trigger-Mes- sung
Holding Register 38 *	0x0025	Seriennummer
Holding Register 39 *	0x0026	Firmwareversion
Holding Register 40 *	0x0027	Maximaler Multiplikatorwert

Holding Register 41	0x0028	Schwelle TP 1.1
Holding Register 42	0x0029	Schwelle TP 1.2
Holding Register 43	0x0030	Schwelle TP 1.3
Holding Register 44	0x0031	Schwelle TP 1.4
Holding Register 45	0x0032	Schwelle TP 2.1
Holding Register 46	0x0033	Schwelle TP 2.2
Holding Register 47	0x0034	Schwelle TP 2.3
Holding Register 48	0x0035	Schwelle TP 2.4

Nummer des Input Registers	Adresse	Beschreibung
Input Register 1	0x0000	NTC_IR1 (Temperatur optischer Detektor 1 [°C])
Input Register 2	0x0001	NTC_IR2 (Temperatur optischer Detektor 2 [°C])
Input Register 4	0x0002	Belegt
Input Register 4	0x0003	1. Byte-IP-Adresse
Input Register 5	0x0004	2. Byte-IP-Adresse
Input Register 6	0x0005	3. Byte-IP-Adresse

Input Register 7	0x0006	4. Byte-IP-Adresse
Input Register 8	0x0007	Speicherauslastung [%]
Input Register 9	0x0008	Fehlerzustand 0: Kein Fehler 1: IR-Fehler 2: Speicher voll 3: Andere


Erläuterungen:

- Die Werte der Holding-Register 1 bis 8 sollten mit dem maximalen Multiplikator multipliziert und dann durch 65535 geteilt werden. Wenn z. B. der Wert des Holding-Registers 1, 45000 und der Wert des maximalen Multiplikators 5000 beträgt, entspricht dies einem Wert von 3433,28 für TP1.1.
- Die Werte der Holding-Register 9 bis 16 bzw. 41 bis 48 sollten durch 1000 geteilt werden.
- Die Werte von Holding-Register 39 sollten durch 10 geteilt werden.
- Holding-Register, die mit Sternchen (*) gekennzeichnet sind (Holding-Register 1 bis 23 und Holding-Register 38 bis 40), sind schreibgeschützt vorgesehen.
- Über das Holding-Register 24 wird das Messintervall in Minuten eingestellt. Hierfür sind die folgenden Auswahlmöglichkeiten verfügbar: 10, 20, 30, 60, 120, 180, 240, 360, 480, 600, 720, 1440 min.
- Die Werte der Input-Register 1 und 2 sollten durch 10 geteilt werden. Wenn z.B. der vom Input-Register 2 gelesene Wert 705 beträgt, entspricht dies einer Temperatur von NTC IR2 = 70,5 Grad Celsius.
- ModBus TCP/IP unterstützt im Gerät eine Kommunikation mit maximal fünf aktiven Verbindungen gleichzeitig. Eine neue Meldung ersetzt die älteste Meldung der vorherigen fünf.

- Die über Modbus ausgelesenen Zeiten sind in GMT-Format angegeben (Menüpunkte im Webinterface "Letzte Messung" und "Letzter Ölwechsel").
- Die Werte des Input-Registers 8 geben den Speicherverbrauch an und sollten durch 10 geteilt werden (Beispiel 327 \rightarrow 32,7 %).

Elektrische Anschlüsse

Anschlussbelegung:

Anschluss	Beschreibung	PIN
+Vcc	Betriebsspannung	1
GND	Erdung	2
Digitaler Eingang	Frei konfigurierbar	3
Digitaler Ausgang 4	Frei konfigurierbar	4
Digitaler Ausgang 3	Frei konfigurierbar	5
Digitaler Ausgang 2	Frei konfigurierbar	6
Digitaler Ausgang 1	Gerätestatus (Fehlerzustand)	7

7. Montage und Inbetriebnahme

7.1. Montage

Der Sensor sollte in die Ölkreislaufleitung der Anlage integriert werden. Die angegebenen Umgebungsbedingungen (Druck < 10 (30) bar, Temperatur < +70 °C) sind einzuhalten. Um einen optimalen Betrieb zu gewährleisten, sollten größere Temperatur-schwankungen im Medium während einer Messung vermieden werden.

Bei einer nachträglichen Ausrüstung der Anlage mit dem System muss ein Rohr entfernt werden und der Sensor dort dazwischen installiert werden. Für größere Volumenströme wird eine Bypass-Verbindung empfohlen.

Da der Sensor eine Engstelle bildet, (0,2 x 5 mm über eine Tiefe von 30 mm), muss sichergestellt sein, dass der Ölfluss durch den Sensor gewährleistet ist.

In der Standardeinstellung erfolgt alle 2 Stunden eine neue Messwertaufzeichnung. Dieser Wert kann bei Bedarf auch geändert werden. In jedem Fall muss aber innerhalb dieser Zeit das Öl in der Messleitung durch den Ölstrom ersetzt werden.

Die Stromversorgung von 18...36 V muss sichergestellt sein. Wenn das Gerät an die Netzspannung angeschlossen ist, leuchtet die grüne Power-LED und die restlichen roten LEDs leuchten für drei Sekunden. Eine Datenabfrage ist nur über ein LAN-Kabel möglich. Daher sollte der Sensor mit einem LAN-Kabel ausgestattet sein, das an einer gut zugänglichen Stelle verlegt ist.

Auf der Vorderseite des Sensors sind Bohrungen mit einem G 1/8"-Innengewinde für die Prozessanschlüsse vorgesehen. Über zwei Einschraubverschraubungen mit Dichtungen kann der Sensor in den Prozess integriert werden.

7.2. Inbetriebnahme

Da es sich bei dem Ölzustandssensor FluidIX Lub-6 um ein empfindliches Messgerät handelt, sollte das Gerät mit entsprechender Vorsicht behandelt werden.

Prüfen Sie vor der Installation und Inbetriebnahme. ob die Umgebungsbedingungen für den Einsatz des Geräts angemessen sind.

Vergewissern Sie sich, dass der Sensor richtig angeschlossen und die Stromversorgung eingeschaltet ist.

8. Wartung

Dank der NDIR-Technologie ist der Ölzustandssensor FluidIX Lub-6 weitgehend wartungsfrei.

Um einen unterbrechungsfreien Betrieb zu gewährleisten, sollte darauf geachtet werden, dass ein permanenter Ölfluss in der Messzelle stattfindet. Hierzu empfehlen wir, das Gerät zu reinigen, wenn der Partikel- und Schlammgehalt in der Anwendung zu hoch ist. Da ein Messspalt mit 0.2 mm vorliegt, achten Sie bitte darauf, dass der Messspalt nicht verstopft wird.

Jedes Öl bzw. iede Ölsorte hat unterschiedliche spektrale Eigenschaften. Wenn Sie auf eine andere Ölsorte wechseln, kann dies auch bedeuten, dass die internen Absorptionsfilter gewechselt werden müssen. Dies bedeutet, dass bei einem Ölwechsel ohne vorherige Anpassung nicht garantiert werden kann, dass die gewünschten Alterungsparameter weiterhin zuverlässig gemessen werden. Wenn das neue Öl nicht mit dem Ölsensor kompatibel ist. muss eventuell ein neuer Ölsensor gekauft werden.

8.1. Zurücksetzen auf Werkseinstellungen

Es besteht die Möglichkeit den Sensor auf die Werkeinstellungen zurückzusetzen. Bitte kontaktieren Sie hierzu die ZILA GmbH.

Gerätesupport

Der Ölsensor ist ein neuartiges Produkt, das erst im Jahr 2020 auf den Markt gebracht wurde.

Bei Fragen zu diesem Produkt nutzen Sie bitte die angegebenen Kontaktmöglichkeiten.

Telefon: +49 (0) 3681 86 73 00

E-Mail: support@zila.de

ZILA GmbH Neuer Friedberg 5 98527 Suhl