

Mounting and operating instructions

Lub-6

Oil-quality sensor

ZILA GmbH Neuer Friedberg 5 98527 Suhl

Tel.: +49 (0) 3681 867300 Fax: +49 (0) 03681 8673099

> Web: <u>www.zila.de</u> EMail: <u>info@zila.de</u>

Table of Contents

1.		Scope of de	livery 2
2.		General info	prmation 2
	2.1.	Instal	lation staff2
3.		Product des	cription2
4.		Product feat	tures 3
	4.1.	Meas	uring principle3
	4.2.	Techr	nical data3
	4.3.	Dime	nsions3
5.		Communica	tion4
	5.1.	Types	of measurement4
	5.2.	Confi	guration web interface 4
		5.2.1.	LED status6
		5.2.2.	Digital I/O configuration. 6
	5.3.	Mode	Bus TCP6
		5.3.1.	Supported data types in ModBus TCP6
		5.3.2.	Supported functions 6
		5.3.3.	Supported exception codes 6
		5.3.4.	Registers7
6.		Electrical co	nnections10
7.		Mounting and comissioning1	
	7.1.	Mour	nting 10
	7.2.	Comi	ssioning10
8.		Maintenanc	e10
9.		Equipment a	and support11

1. Scope of delivery

- Oil-quality sensor Lub-6
- PIN adapter (plug)
- Mounting and instructions

2. General information

Read these installation instructions carefully before using the ZILA oilquality sensor. Follow the instructions. Keep these mounting instructions in a safe place for future use.

2.1. Installation staff

Assembly, commissioning, electrical connection must only be carried out by qualified staff.

Repairs may only be carried out by qualified electricians.

Operate the device only with the specified voltage.

Modification and conversion of the device is not permitted and releases ZILA GmbH from any warranty and liability.

3. Product description

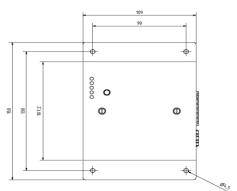
It is a sensor which is suitable for online monitoring of the oil quality under the mentioned conditions of use and environment. The oil condition is measured using the NDIR (non-dispersive infrared technology) optical measuring principle and can be evaluated using digital interfaces and PC software. The sensor is configured at the factory depending on the application.

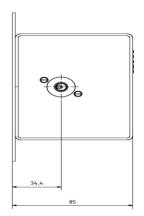
The sensor is located in a stainless steel housing and is integrated into the oil circuit via M10x1 screw connections. In addition, the robust design is suitable for direct mounting on the machine and system. The operating voltage is 18...36 V DC.

4. Product features

4.1. Measuring principle

The integrated measuring system consists of a multi-channel infrared measuring cell with associated electronics and periphery. Based on IR absorption, the oil chemistry is measured and processed on individual spectral bands to determine the oil's chemical composition.


Up to 6 parameters can be determined simultaneously in one system. Which of the following parameters these are is specified by the user before delivery:


- Oxidation
- NitrationSulfation
- Additive content (phenols)
- TAN, TBN
- Ethylene GlycolWater content
- Soot content

4.2. Technical data

Characteristics		
	1836 V DC	
Operating valtage	max. current con-	
Operating voltage	sumption 320 mA	
	@18V	
Design	Stainless steel	
Operating condition	15	
Operating	0 °C to +70 °C	
temperature	0 0 0 0 +70 0	
max. operating	10 bar	
pressure	(optionally 30 bar)	
Storage	-40 °C to +85 °C	
temperature	-40 C 10 +85 C	
Digital I/O Ports		
Digital Input	1x digital in	
Digital Input	1836 V (10 mA max.)	
Disital Output	4x digital out	
Digital Output	1836 V (5 mA max.)	
Ethernet Port		
10/100 Mbit/s Ethernet with standard RJ-45		
LAN 10/100 Base-T connector		
Communication via manufacturer-indepen-		
dent Busprotocol ModBus TCP		

4.3. Dimensions

All figures in mm

5. Communication

There are two ways to communicate with the sensor:

- Web interface
- ModBus-TCP

Five minutes after switching on the instrument, the first measurement is carried out with the standard settings.

If the measurements are to be carried out with a different setup, the user has the option of carrying out this configuration within these five minutes. Afterwards you have to wait until the measurement is finished.

During this time, the sensor can also receive TCP or digital input measurement requests.

During the measurement time, communication with the device via the web interface or the ModBus TCP is not possible.

5.1. Types of measurement

The device supports different types of measurement. When reading out the measurement data, the respective measurement type is specified for each measurement point

- type 0: Measurement after defined time interval from web interface
- type 1: First measurement after switching on the device
- type 2: TCP start trigger for starting the measurement, then continued with defined time interval (type 0)
- type 3: TCP trigger measurement to start measurement at any trigger signal (Attention: at least 10 minutes are required between two measurements)

- type 4: Start trigger via digital input signal for starting the measurement, then continued with defined time interval (type 0)
- type 5: Trigger measurement via digital input signal to start a measurement at any trigger signal (Attention: at least 10 minutes are required between two measurements)
- type 6: Hard trigger measurement. If type 3 and type 5 are selected and no trigger signal is applied, the system starts a measurement after two days automatically.
- type 7: reserved
- type 8: reserved
- type 9: Due to too large oil temperature changes, the measurement is discarted and instead the previous measurment is record until a stable temperature is reached again. After reaching the stable mode the device resumes its normal operation.
- **type 10:** Due to an internal device error the record is duplicated with the previous measurement records. A new measurement is carried out every 10 minutes (for max. 5-times). If no stable state is reached, the device switches to the device error state (red LED is permanently on).

5.2. Configuration web interface

The configuration of the sensor and the transfer of the measurement data is done via the web browser Google Chrome or Mozilla Firefox of the PC. Proceed as follows:

- Set the PC to IP address 192.168.0.100 or another IP address in the same subnet, but not 192.168.0.102, because it is the default sensor IP adress if not changed
- Connect the Ethernet cable between the sensor and the PC (note the firewall setting!).
- Enter the IP address of the sensor in the browser (192.168.0.102/index.html).

The following window opens:

Symbols and description:

Symbol	Description	
	Device information	
×	Instrument settings Device test	
	Measured values and thresholds Setting the limit values, then transfer changes to the device	
	Alarm and Modifications	
?	Imprint	
	Device status OK	
	New measurement necessary Too large temperature change or internal device error (type 9 or type 10)	

	Device status incorrect	
	Memory status	
	Device name and description Input, then transfer changes to the device	
	System time	
2	User management Creating or changing password-pro- tected profiles	
	IP configuration Enter the new sensor IP address (192.168.0.x x=0254), then transfer the changes and restart the device	
	Last oil change Updating time or date, then trans- fer changes to the device	
×.	Last measurement	
	Measuring interval Setting the interval time, then transfer chamnges to the device	
	Digital I/O configuration (see 5.2.2.) Use the sliders for LED and output testing	
	TCP Measurement Setting the measurement type then transfer changes to the device and press "start measurement"	
	Parameter Limits Setting the thresholds, then trans- fer changes to the device	
	Oil condition OK	
	Oil condition medium	
	Oil condition critical	

	Transfer changes to the device	
E	Save measured values Save current measurement data in .txt file	
	Load all measurements Display of measurement results in graphical form	
	Delete all measurements	

5.2.1. LED status

LED #1	Sensor status OFF: Flashing slowly: Flashing quickly: Red:	No error Measurement Full memory Device error
LED #2-4	Output 2-4 - Parameter monitoring Red: Threshold value exceeded - Messaktivität Red: Measurement active	
LED #5	Power status Green: Device ON	

5.2.2. Digital I/O configuration

Input	 Deactivated Dedicated event Start synchronous measurement after start trigger signal (type 4) Trigger measurement (type 5) 	
Output 1	Device status (error status)	
Output 2-4	 Deactivated Measurement activities Monitoring of single parameters Monitoring all thresholds 	

5.3. ModBus TCP

The ModBus protocol is based on a master/slave or client/server structure and is part of the <u>IEC 61158</u> standard. For communication, the device is connected to a PC or a controller via Ethernet cable. The device and PC are located in the same subnet (**192.168.0**.xx).

5.3.1. Supported data types in

ModBus TCP

The following data types are supported by the device:

Data type	Size	Type of
Discrete In- puts	1 bit	Read only
Holding Re- gisters	16 bit unsig- ned	Read/Write (with exceptions)
Input Regis- ters	16 bit signed registers	Read only

5.3.2. Supported functions

The following ModBus TCP functions are supported by the device:

Function Name	Code	Hex
Read Discrete Inputs	02	0x02
Read Holding Registers	03	0x03
Read Input Registers	04	0x04
Write Single Registers	06	0x06
Write Multiple Registers	16	0x10

5.3.3. Supported exception codes

The following ModBus TCP exception codes are supported by the device:

Exception	Description
Code	
01	Unknown function.
	The received message is not
	a valid action for the
	addressed device
02	Unknown data address.
	The address referred to in
	the "Function-dependent
	data" section of the mes-
	sage is not valid in the
	addressed device
03	Unknown data value.
	The value referenced at the
	addressed device location is
	not within the valid range
04	Failure of a slave device.
	The addressed device could
	not process a valid message
	due to a bad device condi-
	tion

5.3.4. Registers

Functions that are read or written by the device are mapped as follows to **11** discrete inputs, **39** hold registers and **9** input registers:

Discrete Input Number	Address	Description
Discrete Input 1	0x0000	Measurement status (0 if no measurment is in progress)
Discrete Input 2	0x0001	Internal memory status (1 if memory is full, otherwise 0)
Discrete Input 3	0x0002	TP channels have exceeded the threshold values 0 : No threshold exceeded 1 : One or more channels have exceeded the threshold values
Discrete Input 4	0x0003	TP 1.1 has exceeded the threshold 0: Threshold not exceeded 1: Threshold excee- ded
Discrete Input 5	0x0004	TP 1.2 has exceeded the threshold 0: Threshold not exceeded 1: Threshold excee- ded
Discrete Input 6	0x0005	TP 1.3 has exceeded the threshold 0: Threshold not exceeded 1: Threshold excee- ded
Discrete Input 7	0x0006	TP 1.4 has exceeded the threshold 0: Threshold not exceeded 1: Threshold excee- ded

Discrete Input 8	0x0007	TP 2.1 has exceeded the threshold 0: Threshold not exceeded 1: Threshold excee-
		ded
Discrete Input 9	0x0008	TP 2.2 has exceeded the threshold 0: Threshold not exceeded 1: Threshold excee- ded
Discrete Input 10	0x0009	TP 2.3 has exceeded the threshold 0: Threshold not exceeded 1: Threshold excee- ded
Discrete Input 11	0x000A	TP 2.4 has exceeded the threshold 0: Threshold not exceeded 1: Threshold excee- ded

Holding Register Number	Address	Description	
Holding Register 1 *	0x0000	TP 1.1 (raw value 1 or reference value)	
Holding Register 2 *	0x0001	TP 1.2 (raw value 2)	
Holding Register 3 *	0x0002	TP 1.3 (raw value 3)	
Holding Register 4 *	0x0003	TP 1.4 (raw value 4)	
Holding Register 5 *	0x0004	TP 2.1 (raw value 5 or reference value)	
Holding Register 6 *	0x0005	TP 2.2 (raw value 6)	
Holding Register 7 *	0x0006	TP 2.3 (raw value 7)	

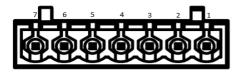
	1		
Holding Register 8 *	0x0007	TP 2.4 (raw value 8)	
Holding Register 9 *	0x0008	TP 1.1 (Absorptions- wert)	
Holding Register 10 *	0x0009	TP 1.2 (absorbance value)	
Holding Register 11 *	0x000A	TP 1.3 (absorbance value)	
Holding Register 12 *	0x000B	TP 1.4 (absorbance value)	
Holding Register 13 *	0x000C	TP 2.1 (absorbance value)	
Holding Register 14 *	0x000D	TP 2.2 (absorbance value)	
Holding Register 15 *	0x000E	TP 2.3 (absorbance value)	
Holding Register 16 *	0x000F	TP 2.4 (absorbance value)	
Holding Register 17 *	0x0010	Read type of measu- rement (type 0 to type 6)	
Holding Register 18	0x0011	Last measurement (year)	
Holding Register 19	0x0012	Last measurement (month)	
Holding Register 20	0x0013	Last measurement (day)	
Holding Register 21	0x0014	Last measurement (hour)	
Holding Register 22	0x0015	Last measurement (minute)	
Holding Register 23	0x0016	Last measurement (second)	
Holding Register 24 *	0x0017	Measurement Inter- val [minute]	

	T		
Holding Register 25 *	0x0018	Number of cycles	
Holding Register 26 *	0x0019	Cycle time [seconds] [1/Hz]	
Holding Register 27 *	0x001A	Channel 1 min. power	
Holding Register 28 *	0x001B	Channel 1 max. power	
Holding Register 29 *	0x001C	Channel 2 min. power	
Holding Register 30 *	0x001D	Channel 2 max. power	
Holding Register 31	0x001E	Last oil change (year)	
Holding Register 32	0x001F	Last oil change (month)	
Holding Register 33	0x0020	Last oil change (day)	
Holding Register 34	0x0021	Last oil change (hour)	
Holding Register 35	0x0022	Last oil change (minute)	
Holding Register 36	0x0023	Last oil change (second)	
Holding Register 37	0x0024	Read/Write TCP measurement 0: TCP measurement deactivated 1: Synchronous me- asurement after TCP start trigger signal 2: TCP trigger measu- rement	
Holding Register 38 *	0x0025	Serial number	
Holding Register 39*	0x0026	Firmware version	

Input Register Number	Adress	Description	
Input Register 1	0x0000	NTC_IR1 (temperature optical detector 1 [°C])	
Input Register 2	0x0001	NTC_IR2 (temperature optical detector 2 [°C])	
Input Register 3	0x0002	PT1000 (temperature oil [°C])	
Input Register 4	0x0003	1. Byte IP address	
Input Register 5	0x0004	2. Byte IP address	
Input Register 6	0x0005	3. Byte IP address	
Input Register 7	0x0006	4. Byte IP address	
Input Register 8	0x0007	Memory usage [%]	
Input Register 9	0x0008	Error status 0 : No error 1 : IR-Error 2 : Full memory 3 : Others	

Explanations:

- The values of the hold registers 1-17 should be divided by 1,000. For example, if the value of holding register 1 is 10351, this corresponds to a value of 10.351 for TP1.1.
- The values of Holding Registers 27-30 should be divided by 100.
- Holding registers with asterisks (*) (holding register 1-16, holding register 24-30 and holding register 38,39) are intended to be read-only.



- The values of input registers 1-3 should be divided by 10. If the value read by input register 2 is 705, this corresponds to a temperature of NTC_IR2 = 70.5 degrees Celsius.
- MODBUS TCP of the device supports communication with a maximum of five active connections simultaneously. A new message replaces the oldest message of the previous five.

6. Electrical connections

Pin assignment:

Connection	Description	PIN
+Vcc	Operating voltage	1
GND	Ground	2
Digital Input	Configurable	3
Digital Out- put 4	Configurable	4
Digital Out- put 3	Configurable	5
Digital Out- put 2	Configurable	6
Digital Out- put 1	Device status (error status)	7

7. Mounting and comissioning

7.1. Mounting

The sensor should be integrated into the pipe of the oil circuit in the plant. The specified ambient conditions (pressure < 10 (30) bar, temperature < +70 °C) must be observed. For optimum operation, larger temperature fluctuations in the fluid should be avoided during a measurement.

If the plant is later equipped with the sensor system, a pipe must be separated and the sensor

installed in between. A bypass connection is recommended for higher volume flows.

Since the sensor represents a narrow point $(0.2 \times 5 \text{ mm over a depth of } 30 \text{ mm})$, it must be ensured that oil flow through the sensor is guaranteed.

In the default setting, a new measured value is recorded every 2h. This value can also be changed if required. In any case, however, the oil in the measuring pipe must be replaced by the oil flow within this time.

The power supply of 18...36 V must be guaranteed. When the device is connected to the power supply, the user will notice the green power LED is on, and other red LEDs will be on for three seconds. A **query of the data is only possible via LAN cable**. Therefore, the sensor should be equipped with a LAN cable which is routed to an accessible location.

On the front side of the sensor, holes with an M10x1 female thread are provided for the process connections. The sensor can be integrated into the process via two screw-in fittings with seals.

7.2. Comissioning

Since the oil condition sensor Lub-6 is a sensitive measuring instrument, it is recommended to handle the instrument carefully.

Before installation and commissioning, check whether the ambient conditions are suitable for the use of the instrument.

Make sure that the sensor is connected correctly and that the power supply is switched on.

8. Maintenance

Thanks to NDIR technology, the Lub-6 oil condition sensor is largely maintenance-free.

In order to ensure continuous operation, care should be taken to ensure that a permanent oil flow takes place in the measuring cell.

Every oil or every type of oil has its own spectral characteristics. If you switch to a different type of oil, this could also mean changing the internal absorption filters.

8.1. Factory Reset

A factory reset is possible. Therefore please contact ZILA GmbH.

9. Equipment and support

The sensor is currently still in the testing phase.

For questions about this product please use the given contact possibilities.

Telefon: +49 (0) 3681 86 73 00

EMail: support@zila.de

ZILA GmbH Neuer Friedberg 5 98527 Suhl